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Abstract 

The Gel’fand-Levitan equation for the quantum nonlinear Schrodinger 

field theory is used to investigate the correlation functions of the 

delta-function Bose gas. Operator expressions are derived for the field 

and for nonlocal products of fields in terms of the quantized reflection 

operators which create and annihilate eigenstates of the Hamiltonian. 

For the two-point function, an explicit series expression is obtained in 

which the nth term is determined by well-defined n-body combinatorics in 

an infinite volume. The inductive properties of this series are 

discussed and used to express the temperature and chemical potential 

dependence of the correlation functions entirely in terms of previously 

known thermodynamic functions. The zero separation limit of the series 

for the two-point function reproduces the thermodynamics derived by Yang 

and Yang, while the infinite coupling limit gives the Fredholm 

determinant result of Schultz and Lenard. The latter is related to the 

Painlev;! V equation by the monodromy arguments of Jimbo, Miwa, Mori, and 

Sato. The 0(1/c) correction to the large coupling limit is calculated 

from the Gel’fand-Levitan series and expressed in terms of solutions to 

Painlev:! V. The asymptotic behavior of the relevant Painlev; function 

is discussed and related to the long range behavior of the correlation 

function. 
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I. Introduction 

The theory of completely integrable quantum systems is a subject of 

continuing interest in field theory and statistical mechanics.’ At its 

present stage of development, the theory provides a general method for 

constructing the exact eigenstates and eigenvalues of the Hamiltonian or 

transfer matrix of an integrable model. This is accomplished either by 

the original wave function ansatz method of Bethe or by the more 

recently developed quantum inverse method,’ which reduces Bethe’s ansatz 

to an elegant operator algebra. In general, the eigenstates of the 

theory must be built on a “pseudovacuum” state which is far from the 

physical states of interest (e.g. the empty Dirac sea in relativistic 

fermion theories). The physical states are obtained by filling a large 

number of negative energy modes, the number of filled modes going to 

infinity as the infrared (box) and ultraviolet (lattice) cutoffs are 

removed. Thus, the eigenstates of interest, in particular the physical 

vacuum, are represented by very complicated Bethe wave functions. Since 

the number of terms in the inner product of N-body Bethe wave functions 

grows like (N!)*, the problem of computing physical quantities is 

formidable. 

In this paper we consider the problem of correlation functions in 

the nonlinear Schrodinger (delta-function Bose gas) model, which is in 

many ways the simplest of the general class of integrable systems that 

can be solved by Bethe ansatz or inverse scattering techniques. The 

infinite coupling (c=-) limit of this model, known as the impenetrable 

boson model, has been extensively studied,3-6 and the calculation of 

correlation functions has been carried out in closed form in terms of 
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Painlev; transcendents. 6 Our approach to the general finite coupling 

case is based on the Cel’fand-Levitan formalism developed earlier by the 

authors. 7 Some results of this investigation have been reported 

previously.‘-’ Here we present a detailed discussion of the formalism 

and results. The main result is a series expansion for the correlation 

functions of Schrodinger field operators. The nth term in this series 

may be explicitly calculated from the nth term of the corresponding 

operator series obtained from the Gel’fand-Levitan equation. (Recently, 

Korepin lo has obtained a series expansion for the density-density 

correlation using a somewhat different approach.) Up to the present 

time, we have not been able to reduce these results to a closed form 

expression for the correlation function. However, the term-by-term 

series calculation is completely well-defined and may be carried out to 

any desired order. It should serve as a useful guide for subsequent 

investigations aimed at deriving closed form expressions. 

The nonlinear Schrodinger model is described by the Hamiltonian 

H = hiax+*ax~ + c~*~*~$] (1 .l) 

where o(x) is a nonrelativistic boson field with canonical commutation 

relations. The model has a conserved number operator 

N = I dx t~*(xMx) (1.2) 

and in the n-particle sector is equivalent to a system of n identical 

bosons interacting via a two-body 6-function potential of strength 2~. 

Although many of our general results for the correlation functions 

of this model are applicable to the case of arbitrary 2n-point 

functions, we shall restrict our attention to the 2-point function. At 
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zero temperature the 2-point correlation function at finite density D is 

defined as 

G(x-y) = lim <*NLI$*w(Y)I*NL> (1.3) 
N,L+- 
N/L=D 

where the state IqNL > is the ground state of N particles in a box of 

length L. In our approach it is actually more convenient to consider 

the corresponding quantity at finite temperature: 

GB.u 
(x-y) = lim Tr $*(~)+(y)e~(~~-~) 

L+- Tr ,e.(WH) 
(1.4) 

where g is the inverse temperature, k is the chemical potential, and the 

trace is to be taken over all states of the system in a box of Size L. 

Although the evaluation of (1.3) or (1.4) in the general case 

remains a notorious unsolved problem, there are two special cases for 

which the result has been known for Some time. The first of these is 

the case x=y first obtained by Yang and Yang” by a variational method. 

Since $*(x)+(x) is just the particle density opertaor, we see that 

‘a,p (G) reduces to D(g,k), the expression for the particle density D as 

a function of the temperature and chemical potential. The function 

D(B,p) yields all thermodynamic information about the System; in 

particular the grand partition function Q = Tr e B(WH) may be expressed 

as 

{ In Q = BI’dn’ D(B,u) 
-m 

(1.5) 

The result of Yang and Yang may be summarized as 

D(6,v) = I g p(k) (1.6) 
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where the density function p(k,B,u) is given in terms of another 

function c(k,B,p) by 

I a 
p(k) = 8z ln(l+e -U(k)) (1.7) 

The function c(k,E,v), which describes the finite temperature excitation 

spectrum, satisfies the following nonlinear integral equation 

e(k) = k2-u- +, 2 A(k-q) ln(l+e -BE(q)) (1.8) 

where the kernel A is given by 

A(k-q) = Ck-;;z+cz (1.9) 

As will be seen, the g and k dependence Of the full two-point function 

(1.4) may be expressed in terms of this fUIICtiOn E(k,a,u). 

The second case for which exact results are known iS that of 

infinitely repulsive coup1 ing c+-. In this case the Hamiltonian (1 .l) 

may be diagonalized by means of a Jordan-Wigner transformation and it 

has been shown by Lenard’ and Schultz3 that the two-point function 

GE,,(x-y) may be expressed as the first Fredholm minor associated with 

the kernel 

K(z,z') = $dk 
,ik(z-2') 

, +e8(k2-d 
(1.10) 

acting on the interval Cy,xl. Both Of these known reSUlts, i.e. x-y 
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and c==, previously obtained by quite distinct methods, arise as simple 

special cases of our general approach. 

The remainder of the paper is organized as follows. In Section II 

we review the necessary results of the quantum inverse method and derive 

a normal ordered expansion for +*(X)@(Y) in terms of the quantized 

reflection operator. We also describe a method, central to our 

approach, for handling the thermodynamic limit L+m in (1.4). This 

enables us to compute directly in an infinite volume without ever 

introducing a finite box and periodic boundary conditions. In Section 

III these results are used to obtain an infinite series representation 

for the two-point function G g,u(x-y) in which the 8 and I.I dependence is 

expressed solely in terms of the function e(k,B,k) in (1.6). The form 

of the result is such that the zero temperature (B-‘-j limit may be taken 

trivially. In the case x=y it is shown that this Series repreSentatiOn 

reproduces the results of Yang and Yang for the thermodynamics of the 

system. In Section IV we use these results to obtain the first two 

terms in a large coupling expansion of the zero temperature two-point 

function. (1.3).8 r section V contains a short discussion. 
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II. Review of the Quantum Inverse Formalism 

This Section contains the essential results of the quantum inverse 

method for the nonlinear Schrodinger model, together with our 

prescription for handling the thermodynamic limit. The quantum inverse 

method’ for the Hamiltonian (1.1) is implemented through the linear 

Zakharov-Shabat eigenvalue problem 

Ci& + $,)*, = -JCU2$ 

(i& - -$,;5)$~~ = J&**, (2.2) 

The scattering data operators a(F,) and b(E,) are defined in terms of the 

Jost solutions $(x,F,) or x(x,E) with the properties 12-14 

(2.3a) 

(--;;;;:1I:::)-%q +J_ ( p e-y 
(2.3b) 

The quantized reflection operator R(E) is given by 

R(S) = 1 b(E) a-‘CC,) 
JF 

and satisfies the simple commutation relations 

[H,R*(E)] = f,‘R*(S) 

R(c)R(c’) = S(E’-<)R(S’)R(E) 

R(E)R*(S’) = S(E-S’)R*(C’)R(S) + 2n6(5-6’) 

(2.4) 

(2.5) 

(2.6a) 

(2.6b) 



-9- FERMILAB-Pub-85/51-T 

where H is the Hamiltonian, and S is the two-body S-matrix 

(2.7) 

From these relations we see that the states 

Ik ,,...,kN> = R*(k,) . ..R*(kN)IG> are eigenstates of the Hamiltonian with 
N 

energy 1 kn’. These states are identical with those obtained by means of 
n=l 

Bethe’s ansatz. 

The inverse transformation from the reflection operators R(k) back 

to the Heisenberg field e(x) is accomplished by means of the quantized 

version of the Gel’fand-Levitan equation. ’ BY using the analytic 

properties in P, of the Jost solution x(x,F,) it was shown in Ref. 7 that 

the COmpOnentS x, and x2 may be expressed as expansions in the operators 

R(c) and R*(c). The asymptotic behavior 

x(x,c)eicx’2 5’” (o)- ; @?;(x,)dx) + G(l/52) (2.8) 

yields corresponding series for the field operator O(x) and the charge- 

density operator j,(x) = $*(x)$(x). Some properties of the e(x) Series 

were studied in Refs. 7 and 15, while j,(x) was used in Ref. 16 to 

derive the equilibrium thermodynamics of this model at finite 

temperature and density. 

The Gel’fand-Levitan series for the field e(x) may be expressed in 

the form 
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- N 

e(x) = 1 l II (si) i [sj] s(p,k;x) R*(P,)...R*(pB)R(kN).. 
N-0 i=l ” j=o 2n 

.R(kC). 

(2.9) 

where 

N N 
i(h,- lPi)x 

gN(p,k;x) = N 
(-cjNe 0 1 

11 (Pm-km-ie)(Pm-km-l-ie) 
m=l 

(2.10) 

Another interesting representation for 4(x) can be derived by exploiting 

the eonnecti,on between the R Op@ratOrs and the Bethe’s ansatz 

eigenstates. This representation is discussed in Appendix C. 

We can also obtain a representation similar to (2.9) for the charge 

density operator jo(x)=+*(x)+(x). For the study of correlation 

functions, we are interested in the normal ordered series for the more 

general bilocal operator $*(x)@(y). Using the normal ordered series for 

$(Y) and G*(X), the product e*(x)+(y) can be normal-ordered by use of 

the algebra (2.6). This procedure is simply accomplished by use of the 

analytic properties of the Jost solutions. In what follows we shall 

suppose that x>y. If we write the series analogous to (2.9) for e*(x), 

we can normal order the product by moving q(y) past the R(k)‘5 in each 

term. For example, the first non-trivial term comes from 

[$*(x)](~) = c’~dPndp,dk, 
R*(p,)~*(p,)R(k,)e~(~1-~0-~1)~ 

(PC-k,-ie)(p,-k,-ie) 

(2.11) 

Then. 
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c$*h)l(*) $(Y) = h’,dP,dk, 
R*(p,)R*(p,)(~(y)R(k,)+[R(k,),~(Y)l) 

(PO-k,-ic)(p,-k,-ic) 

xei(k,-Po-P,)x (2.12) 

The first term in the brackets gives a normal ordered Series while the 

second involves the commutator 

[R(k),@(y)] = -(a*(k))-‘*~(y,k)YH(y,k) (2.13) 

where 

Y2(x,k) = x~(x,k)-iJ~R*(k)X*(x,k) (2.14) 

on the real k axis. The commutation relation (2.13) is the hermitian 

conjugate of the one derived in Ref. 7. In that reference it was also 

shown that Y,(x,c) is analytic in the lower half 5 plane. As (a*(S))-’ 

and Ji,*(x,<) are analytic in the upper half 5 plane, this implies that 

the commutator [R(k),@(y)] is analytic in the upper half plane. By 

using the large k behavior of the Jest solutions, the asymptotic 

behavior of the commutator (2.13') is found to be 

e iky[R(k),$(y)] k;- 0(1/k) 

Thus the second term in Eq.(2.12) involves the integral 

dk, e 
J. 

ik,(x-y)(eiklyCR(k,),~(y)]) 

(PO-k,-ic)(p,-k,-ic) 

(2.15) 

(2.16) 

which, for x>y, can be evaluated by closing the contour in the upper 
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half Plane. This gives zero by analyticity. The same procedure can be 

used term by term in the series for e*(x) yielding a normal ordered 

double series for the bilocal product which is obtained simply by 

inserting the series For e(y) between the RX’ s and the R’s of each term 

in the series for Q*(x). Thus we have a representation of the form 

m N dpi N dki 
$*(x)a(Y) = 1 I n - - 

N=O 0 2n ; 2n 
FN(k,p;x,y) R*(pO)...R*(pN)R(kN)...WkO) 

(2.17a) 

in which the FN are expressed as sums of products of the gN in (2.10). 

N 
FNb,k;x,y) = 1 g)kO...kn-,;pO...pniX) 8Nmn(Pn+, 

n=O 
. ..pN.kn...kN;y) 

(2.17b) 

By similar arguments we may obtain normal ordered series expressions for 

arbitrary multilocal products of field operators. Although we will only 

discuss the two-point function here, many of our results generalize to 

the *n-point functions for arbitrary n. 

Having derived a series expression for the operator e*(x)e(y) in 

terms of the eigenmode operators R and R*, we now wish to evaluate the 

*-point function Gg,p (x-y) by calculating the traces in Eq.Cl.4). In 

order to do this, we must carefully define our prescription for treating 

the infrared divergent terms which arise in these traces in the 

thermodynamic limit L + m. The basic problem here is that, in an 

infinite volume, matrix elements of the form 
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<P ,,...,pNlm*(x)O(y)lk,,...,kN> (2.18) 

have singular terms proportional to (Pi-ki )-’ which prevent us from 

immediately setting piSki as is required for calculating the trace. 

Imagine calculating the matrix element (2.18) as an integral over N-body 

coordinate space (Bethe’s ansatz) wave functions, 

<P 1 . ..pNl$*(x)e(y)lk....kN> 

= h2 . ..ds IL, *(X,Z2... ZN)lk(Y,Z2... 2,) (2.19) 

where $ and vk are the wave functions for the states 

,k,...k;>. 

IP,. . . pN> and 

If the system is in a finite box, the z-integrations are 

bounded and we may immediately set pi=ki. However, in an infinite volume 

there will be unbounded z integrations of the form 

dz ei(ki-Pi)s - i(pi-ki)-‘. (2.20) 

Since much of our Gel’fand-Levitan formalism is valid only in the 

infinite volume case, we must find the correct prescription for handling 

the singularities arising from unbounded z integrations. Our criterion 

for determining the correct prescription is that it should give the same 

answer that would be obtained by putting the system in a box and taking 

the limit L + m at the end of the calculation. As we shall see, this 

requirement leads uniquely to the use of an infinitesimal boost as a 

means of cutting off the infrared singularities represented by vanishing 

denominators of the form (2.20). This method was first applied to 

thermodynamic calculations in the course of a detailed graphical 

derivation of the Yang and Yang eqUatiOn of State. 17 However, the reason 
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for its validity is quite general and easily seen if we keep in mind the 

structure of the Bethe’s ansatz wave functions in (2.19). First we note 

that dividing by the partition function in Eq.(1.4) simply removes the 

disconnected parts of the trace in the numerator, so we only need to 

concern ourselves with connected parts of the matrix element (2.19). 

Now consider the divergent terms of the form (2.20) which arise from the 

integration Over zR with the other zi’s held fixed. Of all the terms in 

the product of wave functions in (2.191, the only terms which diverge as 

‘N + ‘N are those for which the 5 integration is unbounded. Leaving 

out inessential factors, this gives 

m 
.-io, jzdzNei(kN-pN)zN + e’“2L,dzNe’(kN-b)zN 

-m 

(2.21) 

where z and i’ are the smallest and largest of the coordinates 

x,y,z ,,... zN-,. The phases 8, and CB2 are sums of two-body phase shifts 

which depend on the relative ordering of the k’s and p’s and on which 

set of states we are using (e.g. in states or out states). However, 

the relative phase of the two terms is always 

.l(‘, +“2) =N;‘S( kN-kijS(pi-%). 
i=l 

(2.22) 

If the system were enclosed in a finite box of length L, the limits of 

integration +- in (2.21 1 would be replaced by +L/2, and the terms 

proportional to L would include a factor 

(e -ml _ eio2) = e -iOlc, _ ei(01+02)1e (2.23) 



-15- FERMILAB-Pub-85151-T 

Thus, when we set pi=ki, i=l,...,N to take the trace, this factor 

vanishes, 

cei(@,+02) _ ,, I o (2.24) 

i.e. the terms which might have diverged as L + m actually vanish. In 

order to reproduce this result without introducing a box, we can simply 

let the pi’s be slightly different from the ki ‘s in such a way that all 

momentum differences are unchanged, i.e. 

PN-Pi = kN-ki, i=l,...,N-1 (2.25) 

so that the factor (2.24) remains zero. This requirement dictates that 

the state Ip1 . ..pN> is related to the state Ik,...kN> by an 

infinitesimal Galilean boost, i.e. pi=ki+q, where q is a Small momentum 

which plays the role of an 

are led to the formula 

correlation functions from 

infrared cutoff. By these considerations we 

which will actually be used to calculate 

the Gel’fand-Levitan formalism, 

G6,!J 
(x-y) = lim Tr{e-iqKo*(x)e(Y)e -E(H-$‘I I 

q+o 
(2.26) 

where K is the generator of Galiiean boosts, 

K = Ix e*(x)e(x)dx . (2.27) 

Note that it is not necessary to divide by a partition function to 

cancel out disconnected pieces in (2.26). This is a convenient property 

of the infinitesimal boost cutoff which results from the fact that a 

disconnected contribution will always be proportional to a nvacuumqf 
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subgraph (i.e. a graph not connected to the operator $*(x)@(y)) which 

will vanish by momentum conservation, since Ipi - lki = nq f 0 where n 

is the number of particles in the vacuum subgraph. Equivalently, we 

might have included a denominator Trie -iqKe-B(H-UN) 1 in (2.26), but this 

is just unity since only the zero particle state contributes. 
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III. Correlation Functions 

This section contains the essential points of the computation of 

correlation functions in our quantum inverse approach. In order to 

present the structure of the computation as simply as possible, the most 

technical material is relegated to the Appendices. Our starting 

assertion is that the finite temperature two-point function G 6,u(x-Y) 

may be computed from the representation 

Tr ,-W ~*cx)e(y)e-6(H-~N) 

%,u 
(x-y) = lim 

q+. Tr ,-iqK ,-B(H-uN) (3.1) 

where the boost operator e -iqK is defined in (2.27) and $*(x).$(y) is 

expressed in terms of the fundamental operators R(k) and R*(p) by 

(2.17). Performing this substitution we obtain 

m N 

Cg,p(x-y) = lim 1 I[ iI gjgj) FN(p,k;x,y)n’N’(p,k;q) 
q+O N=O j=O 

(3.2) 

where AcN) is the thermal trace of a product of R operators 

A(N)(p,k;q) = 
Tr eeiqK R*(pO) . ..R*(pN)R(kN)...R(ko)e-a(H-uN) (3 3) 

Tr ,-iqK,-B(H-pN) 

Xhen formulated in this way, the calculation is in principle no more 

complicated than our previous derivation 16 of the thermodynamics of the 

system, the latter, as pointed out in Section I, being equivalent to 

computing the zero separation correlation function G R,p(O). [Indeed it 

is easy to see that as y + x the operator expression (2.17) reduces to 
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the expression for $*(x)$(x) considered in this earlier work.] The 

fundamental result which is needed iS a” expression for the quantity 

A(N) defined in (3.3). In Ref. 16 it was shown, by using the cyclic 

property of the trace and the algebra of the R operators, that this 

quantity may be written as a multiple fugacity Series, with one 

summation for each pair of R*(p) and R(k): 

A(N)(p,k;q) = ; ; (-,)ni+l e”i6(“-k;) 

no... nN=l i-0 

x<OIR(kN+nNq)... R(kO+“,q)R*(pO)...R*(pN)~O>~~l + o(q)] (3.4) 

Note that (3.4) is not an exact fOtTUla, but rather contains corrections 

of order q. A,sufficient condition for it to be correct to use (3.4) 

with the terms of order q neglected when evaluating (3.2) is that the 

function FN(k,p) have the property that FN(ki,pj=kp.+nP,q) is finite as 
J J 

q+O for every permutation P of 0,1,2,...,. Y and every choice of the nils. 

Unfortunately, this requirement is not satisfied by the FN(k,p) defined 

in (2.17b). However, in the following we shall be able to prove to all 

orders in N that the condition is satisfied if we replace FN(k,p) by a 

symmetrized quantity FN(k,p) which is obtained from FN(k,p) by first 

symmetrizing the integrand Over ko,...,kN and over po,...,pN and then 

using the relation (2.6a) to recover the original ordering of the R’s 

and R*’ s in each term. For example 

F,(ko’k,‘po.p,) =$F,(ko.k,.po,p,) + S,oF,(k,,ko,po,p,) 

+ SolF,(kO,k,.p,,po) + S,,SO’F(k,,kO.p,~pO)l (3.51 
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sij = S(ki-kj) 

,ij = S(Pi-pj) 

FERMILAB-Pub-85/51-T 

(3.6) 

It is easy to see that the symmetrized fuJICti0” iFN(k,p) is of the 

general form 

N 
FN(p,k) = R [ 

‘ij 
i,j=o kij+ic I( 

pji ) HN(p,k) 

pji+ic N 

i>j il (pi-kj-ie) 
i,j=o 

(3.7) 

where 

kij = ki-kj (3.h) 

pij = Pi-Pj (3.8b) 

and HN(k,p) is a symmetric function of ko,...,kN and of po,...,pN. If we 

replace FN(k,p) by FN(k,p) in (3.2) then the contribution to the 

correlation function is the same for each of the (N+l)! contractions in 

the v=cuum mm-ix element ~o~R(kN+“Nq)...R(kO+“Oq)R*(pO)...R*(pN)~o~ SO 

that provided the limit q + 0 exists we obtain 

m 

GB,,(x-y) = ,zol 2.. .$+N i fN(k,n;x-y) ! e”is(u-k:) (3.9) 
nO...nN=l i-0 

where 
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fN(k,“) = (N+l)! lim FN(P.k)lp=k+nq 
PO 

(3.10) 

(For notational convenience we have supresaed the x-y argument of f,.) 

From (3.7) we easily conclude that fN(k,n) is symmetric under combined 

permutations of the ki and ni, again provided the limit q + 0 exists. 

We now prove the existence of this limit. Possible poles as q+o are 

due to poles in FN(k,p) at pi=kj, i.j=O,l,...,N which in turn are due to 

the poles in the Original functions gN(k,p) in (2.10). Because of the 

symmetry property of HN in (3.7) it is sufficient to consider the nature 

of the pole at pN=kN. In Appendix A it is shown that if we regard 

FN(k,p) as a function of pN with ko,...,kN and po....,pN-, fixed, then 

the residue of the pole at pN-kN is given by 

N 

$1 1’ i=. N1 
[ n So .SiN - l]F N-, ik,. . .kN-, ‘po.~. .pN-,) (3.11) 

where we have used the notation (3.6), and pN should be set to kN since 

we are considering the residue at pN=kN. The important point is that the 

quantity in curly brackets is of order q when pi=ki+niq, i=O,l,...,N-1. 

Thus if we make the inductive hypothesis that the limit (3.10) exists 

for N=M-1 then it exists for N=M since the pole in FM(k,n) at pM=kM does 

not lead to a pole in q as q+O. Since the limit (3.10) exists trivially 

for N=O, this proves the existence of the limit for all N. Furthermore, 

from the above we see that the residue of the pole in fN(k,n) at nN=O is 

given by 
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-J- ,io”j N+l .= A(kN-kj) fN-,(kO...kN-,,“O...“N-l) 

where 

A(k) = -i-&l” S(k) = 2c 
z-7 

(3.12) 

(3.13) 

is the kernel defined previously in (1.9). Let us Split the function 

fN(k,n,x-Y) into a part fN pole(k,n,x-y) whi ch contains a pole in one or 

more of the ni and a part fN(k,x-y) which is free of such poles 

fN(k,“) = TN(k) + f;‘le(k,“) (3.14) 

[A more precise definition of fN is the following: the n-dependence of 

the fu”Cti0” fN is of the general form fN=Ph/(no...nN) where PN is a 

homogeneous multinomial of degree N+l in the ni; the quantity fN is the 

coefficient of nO...nN in this multinomial.] 

By repeated application of the basic induction formula (3.12) it iS 

clear that the pole terms in (3.14) may be related to non-pole terms of 

lower order. Suppose for the moment that the pole terms in (3.14) were 

absent, as is the case in the limit c + - when A(ki-kj) vanishes. Then 

the fugacity sums in (3.9) could be done trivially to obtain 

G13,1J 
(x-y) = N~o,(j~oyo~~j~d fN(k”x-Y) (3.15) 

where 
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PO(k) = 
1 

, +e6(k’-u) 
(3.16) 

is a Fermi-Dirac distribution. In Appendix B it is shown that the 

combined effect of the pole terms in (3.14). when summed to all orders, 

is just to replace the “bare” functions PO(k) by “dressed” functions 

B(k) given by 

b(k) = ’ 
,+eBE(k) 

(3.17) 

where e(k) is the excitation energy function of Yang and Yang defined in 

(1.8). Thus we have 

DI N 

GB ,,(X-Y) = 1 I[ II Ii(kj$$) fN(k,x-y) 
N-O j-0 

(3.18) 

Eq. (3.18) is a fundamental result of our analysis. It expresses the 

full Green’s function at finite temperature and density in terms of 

know” functions p(k,g,u) with temperature and chemical potential 

independent coefficients fN(k,x-y) which are obtained from N-body 

combinatorics on the system defined in an infinite volume. A similar 

formula obtains for any 2n-point function. It is convenient to think of 

the functions p(k) as defining the measure over which the k-integrations 

are done. In the zero temperature limit s+m this measure becomes vet-y 

simple, since p(k) becomes a simple step function, 
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j(k) * 1 Ik[<kF 

= 0 lkl>kF (3.19) 

where kF is the Fermi momentum defined by e(kF)=O. Thus at zero 

temperature we have 

m 
G(x-y) = 1 I 

‘F dk 
4.. .$d f,(k,x-y) 

N=O -kF 2n 
(3.20) 

If desired, the Fermi moment urn lo may be expressed in terms of the 

density D by the implicit equation D-C(O). 

Thus the computation of the two-point function is reduced to the 

evaluation of the quantities TN(k,x-y) in (3.14). In the zero 

separation limit x=y, it is possible to express these quantities in 

simple closed form. It is easy to see that the factor (Ep-Ek) in the 

operator expansion for $*(x)$(x) leads to a” overall factor Zni in the 

quantity fN(k.n) defined in (3.10). From this we see that the residue 

of the pole in fN(k,n) at ni=O is of the form 

(iqoni)(fNi(k) + f;;le(k,“)) 

jti 

(3.21) 

pole where FNi is free of poles in the nj and fNi has poles in one or more 

of the nj, j+i. The non-pole piece fN(k) of (3.14) iS given in terms of 

these fNi by 
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fNW - jofNi(*) (3.22) 

Using (3.12) we may show that the fNj satisfy the induction property 

fNi(kO...kN) - & ,'t A(ki-kj) 'N-l,j(ko...ki+ki+,...kN) (3.23) 
J-0 
j+i 

Since , when x-y, we have foO=l, we may solve this recursion relation to 

obtain, for example 

‘NN = & Sym 
OijLN-1 

A01A12**-AN-1 ,N 
(3.24) 

where Aij=A(ki-kj), and the right hand side iS to be symmetrized over 

kO...kN-,. The fNi for i+N may be obtained by permutation. Substituting 

(3.23) into (3.21) we obtain 

Sym A A 
O<j<N 01 12*"AN-1,N 

(3.25) 
- - 

where the right hand side is to be symmetrized over ko...kN. 

Substituting into the general result (3.18) we find that D(I~,~=G~,~ (0) 

is given by 

D(f3.u) = 1% p(k) (3.26) 

where p(k) satisfies the linear integral eqUatiOn 
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p(k) = j(k) + Iz j(k)A(k-q)p(q) (3.27) 

which is the result obtained first by Yang and Yang. ” It is easy to see 

that equation (3.27) is equivalent to equations (1.7) and (1.8) of the 

Introduction. 
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In this Section we will use the previously developed formalism to 

compute the first two terms in the strong coupling expansion of the zero 

temperature two-point function, 8.18 

- c(k)(x-y) 
G(x-Y) - 1 

k-0 ck 
(4.1) 

Although we have been able to derive these results directly from the 

representation (2.V)-(2.10) of the field operator, they are more easily 

derived using a different representation which is more closely related 

to the form of Bethe’s ansatz. This representation is discussed in 

Appendix C. We find (c.f. Eq.(C.6)) that e(x) can be expressed in the 

form (2.9) with s(x) given by 

g,(x) = (-l)NeikOxldz, . . .dz#(x<z,<z2<. . .<zR) 

N Ie x II i(ki-Pi)si 
i-l 

(, - S, I[ S, Sji)i 
i=l 10. J=, lJ 

(4.2) 

In position space the series has the form 

o(x) = R(x) - Idz,e(x<z){R(l;lx)-R(l;xl)l 

+ ~dz,dz2~(x<z,<z2)[R(12;21X) - R(12;2xl) - R(21 11x2) + R(21 ;X12)1 

+ . . . (4.3) 

where R(x) is the Fourier transform 



R(x) - I $ R(k) eikx , 

FERMILAB-Pub-85151 -T 

(4.4) 

and, for example, R(l2;2lx) is defined by 

R(l2;Zlx) = R*(z,)R*(z,)R(z,)R(z,)R(X) , (4.5) 

As observed in Appendix C, a direct proof that the representation (4.2) 

is equivalent to the Gel’fand-Levitan representation (2.10) involves 

showing that the symmetrized integrand G(X) is the same in the two 

cases. 

Using the position space form (4.3) and the reordering theorem 

discussed in Section 2, it is easy to show that the operator $*(X)$(y) 

is given by 

0) 

$*(x)$(Y) = 1 rN(x’Y) 

N=O 

(4.6) 

vhere, for example, T2(x,y) is given by 

and we have used the notation 

R(xl2;2ly) = R*(X)R*(X,)R*(~,)R(~,)R(~,)R(Y) . (4.8) 

etc. In momentum space (4.7) becomes 
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TN(X’Y) 
N dp dk = I II (-i-i] FN(p.k;x.y) R*(p,)...R*(p,)R(k,) 

i-0 2n 2n 
. ..R(kO) (4.9a) 

where 

N 

FN(P.k;x,y) = 1 F$p.k;x,y) 
M-O 

(4.9b) 

and F/ is given by 

F”(p k.x y) = 
N , v I (-l)Nei(kOY-POx)~dz 1 . ..d% Nn eickimPi)‘i 

i-l 

N-M i-l 
“B(Y<Z,< . . .<$M<X<$M+l<.. . <$, iiT, (l-sio ,n SijSji) _ 

J-1 

Xi (l-iA. .P] (4.10) 
i=N-M+J j-0 ‘J 

The general structure of the term Fz is that N-M of the N z-integrations 

are “trapped” between y and x, while the remaining M integrations are 

unbounded. Associated with the i-th integration there iS a factor 

i-l 
(l-sioj~lsijsjil 

containing a product of an odd number of S-matrices if the i-th 

z-integration is trapped, or 

(l-lils .di) 
j=o iJ 

containing a product of an even number of S-matrices if the i-th 

integration is untrapped. 
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An immediate consequence of the above for the consideration of a 

large c expansion is that each untrapped integration leads to a factor 

l/C. Thus, the zeroth order term G(O) receive3 contributions from only 

the M=O term, while the first correction term G (1) requires only the M=O 

and M-l terms. Since the forward singularities arise only from momentum 

denominators coming from the untrapped integrations, we see that the M=O 

term contains no forward singularities, while the M-l term contains only 

a single pole. This greatly simplifies the analysis. 

Let us first consider the contribution of the M=O term. The 

product of S-matrix factors in Fi may be written 

i-l N 
{ i [(kio+ic) I[ (kij+ic)(pji+iC) - ~.~~]~~~,(poi+iC) 

i-l j-l 

N i-l 
n n [(kij+ic)(pji+ic)l 

i-l j-0 

(4.11) 

where for convenience we have multiplied both numerator and denominator 
N 

by a factor R (poi+ic). Since the combination 
i=l 

R*(pO)... R*(pN)R(kN)...R(ko) 

N i-l 
II il C(kij+ic)(pji+ic)l 

i=l j-0 

(4.12) 

is antisymmetric under interchange of any pair of k’s or p’ 3, and the 

M=O term is free of forward singularities (so that we may use the trace 

theorem (3.4) directly), it is sufficient to sum the numerator of (4.11) 

over all permutation3 of ko...kN (with a minus sign for each odd 

permutation) and then Zet pi equal to ki for i=O,l...N. A3 c-w it is 

clear that the denominator reduces to 



-3o- FERMILAB-Pub-85151-T 

(icjN(N+’ 1 [1+0(1~c2)1 (4.13) 

while even before the anti3ymmetrization and contraction, the curly 

bracket in the numerator is of the form 

2N(ic)NZCl+0(l/CZ)1 (4.14) 

Thus, to order l/c the contribution of the M=O term to the 2-point 

function (3.18) is 

m 

NE0(-2)N~i~o[B(ki~l(‘- $,koN) 

x dz I ,“’ dzNB(y<Z1<z2<...<ZN<X) DN (4.15) 

where DN is an (N+l)x(N+l) determinant of exponentiala, e.g. 

eiko(y-x) eiko(zl-x) ,iko(z2-x) 

D2 
= det ,ik, (Y-2, ) 

I 1 
,ik, (z2-z, ) 

I 

(4.16) 

,ik2(y-z2) eik2(z1-z2) 1 

Since the integrand is symmetric under interchange of ki,zi with k.,z. J J 

for lsj<isN we may rewrite (4.15) as 

d+- I! k ) DN 
‘k,l ON 

(4.17) 
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For the M-l term let us first perform the “untrapped” zN 

integration. Since the integrand is explicity of order l/c we simply 

pick out the leading term and then treat the R(k) and R*(p) as fermion 

operators. 

To this order it is easy to see that the integrand FA’ for Ndl Is 

given by 

_ (-2)NsikOye-i(PO+PN-kN)~~dz 
N-l 

‘hi-Pi )z, 
c l*-*d%-lin,e 

; (Pi-ki) 

“B(Y<Z,<... <~-,w[i=;N-kN - W+l)] (4.18) 

The second term in the square bracket does not contribute because it 

gives a SytMIetriC eXpreSSiOn in pO and pN multiplying an antisymmetric 

fermion operator product. The first term in the square bracket is 

finite as q+O when the P 
j 

are set to kp ,+np, q for any permutation P and 
J J 

any choice of the n. J. Thus, it is sufficient to sum over permutations of 

the ki only. Clearly only those permutations which map kN into itself 

survive in the limit q+O. Picking out the non-pole contribution 

according to the prescription (3.14) we obtain the contribution 

- ~N~i;oP(ki)$] bz,. . .dzN-,B(y<z,<. ..<z+,<x) DN-, (4.19) 

where DN-, is the determinant typified by (4.16). Replacing the ordered 

integrations by unordered ones as before, separating out the trivial s 

integration, and summing over N, we obtain the M-l contribution to order 

l/c as 
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$ &$ G(k) ? qNli!,[$i 
N-O 

P(ki)]ldz,...dsN ~~ (4.20) 

where we have relabelled the sum to run from N=O to m. 

The total two-point function through order l/c is the sum of the 

M=O and M=l contributions (4.17) and (4.20). The c-dependence of these 

quantities is partly explicit and partly implicit in the quantities 

ii(k). In the zero temperature limit, g(k) becomes a step function with 

support between -kF and kF,where kF is the Fermi pseudomomentum. The 

Fermi pseudomomentum is uniquely related to the density D by the 

equation D-G(O) which to this order in & reads 

D = [l$)+F (4.21 1 

Here we will treat kF rather than D as the independent variable, so that 

the zero temperature two-point function to order l/c reads 

“$N(l + $$ -;.y koj) 
J=l 

ddz, . ..dsN DN 

If we define the scaled variable 

(4.22) 

t = kF(x-y) (4.23) 

it is possible to express these results in terms of an integral kernel 
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KC”,“) = s’zp’ (4.24) 

acting on the interval [O,tl. Let us define quantities R(t,k) and 

D,(t,i) to be the usual resolvent kernel and first Fredholm minor, but 

with their arguments evaluated at the end points of the integration 

region, i.e. 

t 
R(t,A) = hK(O,t) + A21 da K(O,z) K(z,t) + . . . 

0 

t 
D,(t,A) = AK(O,t) - SI dz det K(O,t) K(0.z) + 

0 [ 1 K(z,t) K(z,z) 

With these definitions we easily recover the result 

Lenard4 for the infinite c case 

G(O)(t) kF 
= F D, &A=$ 

(4.25a) 

. . . (4.25b) 

of Schultz3 and 

(4.26) 

After some manipulation it turns out that the first correction term G (1) 

may also be expressed in terms of the quantities (4.25j8 

(4.27) 

The work of Jimbo, Miwa, Mori, and Sato6 has shown that the quantities 

(4.25) may be expressed in terms of Painleve transcendents. Let us 

define a function Q(t,A) by the’ differential equation and boundary 
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condition 

0" E [(@‘)Z-11 cot0 + (l-e’)/t (4.28a) 

Q - t - At2 as t+o (4.28b) 

where the prime denotes differentiation with respect to t. [The 

function e(t.A) is related to y(t,A) of Ref. 8. Eq.(7.98), by y-e-2ie; 

in terms of y the equation (4.28a) is a Painleve equation of the fifth 

kind]. Then the resolvent R(t,A) and Fredholm minor D,(t,A) may be 

expressed as 

R- 1-e’ 
2 sine 

t(@‘2-1) 
,4 sin’+ + Cot@ - + 

(4.29a) 

(4.29b) 

Since D,(t,A) = A at t=O, these equations completely specify R(t,A) and 

D,(t,A), and hence the functions G(o) and G(l) in terms of the 

differential equation and boundary condition (4.28). 

Of particular interest is the large distance behavior of the 

correlation function G(x-y). To obtain this we need to know the large t 

behavior of the differential equation (4.28). A discussion of this 

behavior, based on a combination of analytical and numerical work iS 

contained in Appendix D. Using these results one may show that the long 

distance behavior of the infinite c 2-point function iS given by 

+ . . . 1 (4.30) 

where p ~ is a numerical constant given by 
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PO3 = 0.924182203782 

As shown by Vaidya and Tracy,5 this constant iS related to Glaisher’s 

constant A by 

pm 
o/ II .1/2 2-1/3 A-6 (4.31) 

For the first correction term G (1) , we obtain, using CD.31 ), the long 

distance behavior 

G(1) 2kF 
-=,[ 
G(O) 

lnt+Y+31n2-if (4.32) 

Combining this with the c=- result G (0) , and normalizing the result to 

the value D-G(O), which to this order is given by (4.21), we obtain the 

long distance behavior of the 2-point function through order l/c: 

G(t) -= 
G(0) PJl + ZCY + 31n2 - i) I 

J& 

x t 2 lTc 

kF sin2t 
[ - “Y-c 2t (4.33) 

Note that we have interpreted a In t term in C (1) as the first order 

expansion of an asymptotic power t-v with 

“= 1- 2kF 
2 - O(l/CZ) (4.34) llc 

This result is in agreement with the results of Popov 19 and of Haldane2’ 
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“ho have used an effective long range theory to calculate the exact 

value of Y for general coupling c. 
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V. Discussion 

To summarize our main result, the finite temperature’ two-point 

correlation function (3.1) is given by the series (3.18), where P(k) is 

given by (3.171, (1.8), and (1.9), and the functions fN(k,x-y) are given 

by (3.14). (3.10). (3.5) (and its generalization to arbitrary N, 

c.f. Eq. (C.2)), (2.10), and (2.17b). We have also proven the existence 

of the limit q + 0 in Eq. (3.10). This assures that there are no 

infrared divergence problems in computing the series term by term. At 

no time in the calculation do we have to put the system in a box or 

impose periodic boundary conditions. For the case of zero separation, 

x=y, the series (3.18) reproduces the thermodynamics derived by Yang and 

Yang,” and is in fact identical to the series generated by iteration of 

the integral equation (3.27). For c-m, (3.18) reduces to the series 

expansion of a first Fredholm minor determinant, the Schultz-Lenard 

result.3-4 Our result for the 0(1/c) term in the large c expansion8 was 

also obtained from the series (3.18). Thus, nearly all of the known 

results for the two-point function can be derived from this formula. 

[The known result for the asymptotic correlation exponent 

v = 1/f2Cp(kF)]2) has only been obtained to first order in the l/c 

expansion, Eq. (4.34). It would be interesting to derive this result 

from (3.18) for arbitrary c.1 

Unfortunately, a direct term-by-term analysis of the series (3.18) 

has so far not yielded a closed-form expression for the correlation 

function at arbitrary values of c. Explicit calculation of the first 

few terms in the series is straightforward, but the results have so far 

not been particularly illuminating. The complication of summing over 
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permutations of the p’s and k’s has prevented any further simplification 

of the series. In this respect the problem is not unlike those which 

arise in a direct computation of Bethe’s ansatz matrix elements, 

e.g. Eq. (2.19). The potential advantage of the Gel’fand-Levitan 

approach is that it formulates the connection between the N-particle and 

the (N-l)-particle calculation. At the operator level this connection 

results from the fact that successive terms of the Cel’fand-Levitan 

series come from the iteration of a linear integral equation. The sum 

over permutations involved in computing matrix elements obscures this 

connection, although we have managed to obtain an induction formula for 

the symmetrized integrands of the field operator @(Xl I 

Eq. (C.15)-(‘2.16). For the symmetrized integrands of the nonlocal 

product $*(X)$(Y), we have not been able to derive a simple formula 

relating the N-particle integrand to the (N-l)-particle integrand. It 

is interesting that both the Yang-Yang and Schultz-Lenard integral 

equations as well as the monodromy arguments of Jimbo, et al. follow 

from such an induction property for the special cases x=y and c=-. 

Perhaps by a rearrangement or partial resummation of the series (3.18), 

some integral equation or generalized monodromy structure might be 

obtained for the general case. The results we have discussed here 

should provide a useful framework for further study of the Correlation 

functions. 
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Appendix A 

In this Appendix we prove the basic induction formula (3.11) for 

the symmetrized integrand of the operator expression o*(x)@(y). Let us 

write the unsymmetrized integrand in the form 

FN(kO...kN.pO... P,) = 
FN(kO...kN,pO... PN) 

N 
n (Pi-kj) 

i,j=O 

Similarly for the symmetrized integrand we write 

FN(kO...kN,pO...PN) p 
i;,(kO...kN,pO...PN) 

N 
II (Pi-kj) 

i,j-0 

In terms of PN the result (3.11) takes the form 

N-l 
FN(prJ=kN) I -I ( n SNiSiN - 1) 

(N+l)’ i-0 

N-l 
x( n kNjpjti) ~N+o...kN-, ,Po...PN-,) 

j-0 

(A.1) 

(A.2) 

(A.3) 

Let us introduce a notation for the symmetrization process described in 

(3.5): 
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N 

TN = $ FN 
j-0 

(A.4) 

Since the denominator in (A.1) and (A.2) is symmetric in the ki and the 

pi we then have 

N 

FNN- $P, 
j-0 

(A.5) 

With these preliminaries we will now prove the result (A-3). For 

notational simplicity, we will give the result only for the case N-2. 

Let us first consider the case x-y-0. Then the unsymmetrized quantity 

P2 is given by 

2 
P = 

2 (-c)‘{ 1 (pi-ki)/(p,-k,)(p,-k,)(p,-k2)(P2-ko) (A.6) 
i=O 

Let us perform the symmetrization by first averaging over the 3*=9 

positions of k2 and p2, keeping the relative position of k. and k, and 

of po and p, fixed. It is clear that when p2=k2 only 5 of these 9 

permutations contribute and we obtain: 

p;,(p2=k2) = (-;)‘,; pJ=o ifo(piCki) 

x t (PO-k2 

+ (PO-k, 

+ (PO-k, 

+ (P -k 
0 1 

(PO-k,) (p,-k2)(P2-ko) 

(PO-k2) (P,-k,) (p2-ko)S2, 

(pO-k2)(P2-k,) (P,-ko)S2,S 
12 

~po-ko~~p2-k,~~~P,-k2~~2,~‘2~20 
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+ (p2-k,)(p2-ko)(po-k,)(P,-k2)S21S’2S20S02~ (A.7a) 

Without loss of generality let US momentarily set p2-k2=0. Combining the 

above terms then yields 

F2(p2=k2) = 9’ ; ( h (Pi-ki))(po-k, ) 
j-0 i=O 

+OpOpl(‘+S21 1 + kOk,PO(~+S12)S21 

-k,pop,(l+S20)s2,S12 + kok,p,(l+So2)S2,S’2S20~ 

(A.7b) 

Noting the identities 

(A.8) 
‘+sij = -4 kji(Sij-1) 

l+sji =; pji(sji-l) 

and using Calilean invariance to restore an arbitrary value for p2 and 

k2 we obtain 

F2(p2=k2) = (-c)‘,; ( h (pi-ki)](po-k,) 
J”0 i=O 

“i~ko2k12p02p,2(S21S12S20S02-‘) t (A.91 

Since the curly bracket is symmetric in k. and k, and in p. and p, we 

may rearrange (A.9) to give 
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p2(p2-k2) - +2,S’2s20S02-’ )k20k2,p02p12 

x( ‘$ (-c)( i (Pi-ki))(pO-k,)] 
j=O j-0 

(A.10) 

But the expression in curly brackets is by definition~,(ko,kl,po,p,) so 

we have proven (A.3) for N=2 and x-y. The generalization to arbitrary N 

follows in a straightforward manner. 

Let us now consider the case xfy. This is actually a simple 

extension of the x=y result. The only difference is that PN is now 

split up into a sum of N+l terms PN(ko...kN,po..;pN;m), OSma, in each 

of which PO.. . P, and ko...km-, are associated with o*(x) and pm+,...pN 

and k m...kN are associated with $(y). In the m-th term the factor 

E(pi-ki) of +*(0)$(O) is replaced by 

(pm-km) exp-i{( i pi-mj’ki]x + 
N N 

( I Pi- 1 ki)YI (A.11) 
m+l m 

Let ~N(ko...kN,po...pN;m) denote the symmetrized version of 
- 

PN(ko...kN,pO...PN, .m), and let PN(ko...kN,po... pN;m,N), m-0,1.. .N-1 

denote those terms of FN(ko...kN,po...pN) in which m of ko...kN-, and 

m+l of p 0 . ..pN-. are associated with o*(x) and the remainder associated 

with e(y). Then by a simple extension of the x=y result we find 
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N-l 
i;N(pN=kN;m,N) = &z," (s .S l=. N1 iN-') 

N-l 
x F i:okNiPiN N-I(~O"'~N-~'~O . ..pN-.;m) (A.12) 

[The essential point is that in order to get a non-zero result when 

PN=kN, pN and kN must both be associated with 0*(x) Or both with b(y). 

In either case the exponential factor e -i(pN-kN)x or emi(PNmkN)Y is 

unity.] Summing (A.12) over m from 0 to N-l then gives the desired 

result (A.31 for xfy. 
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Appendix B 

The purpose of this Appendix is to prove that the effect of the 

pole terms file in (3.14) is just to replace p,(k) by p(k)=l/(l+e BE(k)) 

in (3.15). From (3.9), (3.12), and (3.14) we see that the full two 

point function G 5,u(x-~) is given by the following graphical 

prescription: 

(1) Draw all possible tree graphs with one base vertex for each 

disconnected part. A base vertex has no incoming lines and an 

arbitrary number of outgoing lines, while all other vertices have 

one incoming line and an arbitrary number (20) of outgoing lines. 

For each such graph let (M+l) denote the number of base vertices 

(i.e. the number of disconnected parts) and (N+l) the total number 

of vertices. Label the vertices as ko...kN. 
N 

(2) Assign a factor 11 (-1)“i e i n.B(il-ki2) to each vertex. 

i=O 
(3) For each line joining ki 

“i 
to kj include a factor FxA(ki-kj) where A 

J 
is as in (‘.!I), and where vertex ki is nearer to, and kj further 

from, the base vertex. 
m 

(4) Sum over the ni and integrate over the ki [ 1 and i gi ] 
n -1 

(5) Include a weight factor ~& ?M(kiO...kiM , where kiO...kiM I are 

the base vertices, and sum over all topologically distinct diagrams 

and all distinct labellings of the vertices. 

More conveniently the last instruction may be replaced by 

(5’) Fix the labelling of the base vertices to be ko...kM and sum over 

all topologically distinct diagrams with weight factor TM(ko...kn). 
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It is now clear that the two-point function is of the form 

Cg,u(x-y) = 1 I-%...2 f,(ko...kM;x-y) F(kO)...c(kM) 
MC0 -277 

(B.1) 

where P(ko) is given by the rules (l)-(4) together with: 

(55) Sum over topologically distinct graphs with M=O (i.e. connected 

directed tree graphs) with base vertex kg, and suppress the 

integral dkO. 

To show that p(k) is given by (3.17) let us define a quantity o(ko) 

by the rules (l)-(4) together with: 

(50) Sum over topologically distinct graphs with M=O and only one line, 

say (ko,k,), joining the base vertex kO to the rest of the diagram. 

Replace the factor for this line by &-A and suppress the integral 

$$I and the sum over no [no 
1 

does not appear]. 

In terms of this o(k) let us define E(k) by 

c(k) = k2-p+a(k) (B.2) 

Then it iS a simple graphical exercise to verify that p(k) is given by 

F(k) = ’ l+e6E(k) 

and that c(k) satisfies the nonlinear integral equation 

E(k) = kZ - n - +$$ A(k-q) ln(l+e -Be(q)) 

(B.3) 

(B-4) 
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The result (B.1) with p(k,B,p) given by (8.3) and (B.4). shows that 

the two-point function G&x-y) may be obtained from the non-pole 

pieces fN(k,x-y) of the quantity fN(k,n,x-y) in (3.14). It is also 

possible to express 
G6,1J (x-y) in terms of the quantity fi(k,x-y) 

obtained from fN(k,n,x-y) by setting all the nits equal to unity: 

fi(k,x-y) = fN(k,ni=l,x-y) (8.5) 

That this is possible is obvious a priori, Since fi(k,x-y) contains the 

non-pole piece fN(k,x-y) and the pole piece can be expressed in terms of 

non-pole pieces of lower order. What is not immediately obvious is that 

when this is done the two-point function can be expressed in a 

factorized form similar to (B-1): 

p*(k$) f;(k,x-y) (B.6) 

In the remainder of this Appendix we will show ,that (s.6) is correct 

with the function p*(k,B.u) given in terms of D(k,f3,u) by 

p*(k) = b(k) exp(-lg’A(k-k’) p(k’)) (8.7) 

To see this, let us define fi(k,x-y) by (B.5) and introduce a quantity 

r(k,)) fz(k,x-y) , (B.8) 

where r(k) is, for the moment, an arbitrary function. The strategy is to 


